Dr. rer. nat. Sebastian Gayler

Akademischer Mitarbeiter

Besucheradresse:

Emil-Wolff-Str. 27
Gebäude 04.24, Zimmer 151 (Institut für Bodenkunde, 1. OG)

Tel: 0711 459-22323
Fax: 0711 459-23117
sebastian.gayler@uni-hohenheim.de

  

Forschungsprojekte

Status: abgeschlossen

Projektbeginn: 15.12.2015
Projektende: 15.12.2017

Förderkennzeichen: LUBW Nr. 4500439542/23

Beteiligte Personen

Beteiligte Einrichtungen

  • regioplus, Mainz; Freie Bodenkundler, Stuttgart; HfWU Nürtingen

Status: abgeschlossen

Projektbeginn: 01.02.2012
Projektende: 31.12.2019

Förderkennzeichen: DFG: FOR 1695

Projekt-Homepage: https://klimawandel.uni-hohenheim.de

Schlagworte: Agrarlandschaften, Klimaänderung, Landwirtschaft und Umwelt, Modellierung, Nachhaltigkeit, Regionalmodell

Beschreibung

Aufbauend auf dem DFG-Verbundprojekt PAK 346 (2008-2011) untersucht die DFG-Forschergruppe 1695 seit 2012 in zehn Teilprojekten die Folgen des globalen Klimawandels für die Struktur und die Funktionen von Agrarlandschaften auf regionaler Skala. Gemeinsames Ziel der Arbeitsgruppen aus Hohenheim, München und Gießen ist es, durch eine Kombination aus integrierter Modellierung, intensiven Feldmessungen und kontrollierten Experimenten zu einem verbesserten Prozessverständnis und einer besseren Kenntnis der Wechselwirkungen zwischen Landoberfläche und Atmosphäre beizutragen, um so Projektionen der Landschaftsentwicklung und möglicher Anpassungsstrategien bis 2030 ableiten zu können. Dazu werden hochaufgelöste regionale Klima-, Landnutzungs- und Pflanzenwachstumsmodelle mit sozio-ökonomischen Modellen gekoppelt und so ein neuartiges Landsystemmodell entwickelt. Mit speziellen Messgeräten und Fernerkundungsverfahren werden in den zwei Modellregionen Kraichgau und Mittlere Schwäbische Alb Daten zu Energie- und Stoffflüssen zwischen dem Boden-Pflanze-System und der Atmosphäre erhoben. In Klimakammern werden künftige CO2- und Klimabedingungen simuliert, um die Auswirkungen auf den Ertrag von Kulturpflanzen und die Qualität der erzeugten Nahrungsmittel zu untersuchen. Die in Feld- und Klimakammeruntersuchungen sowie in Betriebsbefragungen in den Modellregionen gewonnenen Daten dienen wiederum zur Verbesserung von Modellkomponenten und zur Validierung des neuen Landsystemmodells.

Nach einer positiven Begutachtung durch die DFG beginnt im Februar 2015 die zweite Phase der Projektförderung, in der die Forschergruppe 8 Teilprojekte hat. Die zweite Phase endet im September 2018.

Beteiligte Personen
  • Prof. Dr. Eckart Priesack, Dr. Florian Heinlein, Helmholtz Zentrum München; Prof. Dr. Joachim Aurbacher, M. Sc. Aileen Jänecke, Justus-Liebig-Universität Gießen
Beteiligte Einrichtungen
  • Auswirkungen von Trockenstress
  • Klimaschutz
  • Klimaanpassung
  • Institut für Tropische Agrarwissenschaften (Hans-Ruthenberg-Institut)
  • Institut für Landwirtschaftliche Betriebslehre
  • Institut für Landschafts- und Pflanzenökologie
  • Institut für Bodenkunde und Standortslehre
  • Fg. Produktionstheorie und Ressourcenökonomik im Agrarbereich
  • Fg. Pflanzenökologie und Ökotoxikologie
  • Fg. Pflanzenbau in den Tropen und Subtropen
  • Fg. Ökonomik der Landnutzung in den Tropen und Subtropen (Josef G. Knoll Professur)
  • Fg. Bodenbiologie
  • Fg. Biogeophysik
  • DFG-Forschergruppe 1695: Regional Climate Change
  • Bioökonomische Modellierung
  • Land-Atmosphäre-Rückkopplungen
  • Helmholtz Zentrum München, Institut für Bodenökologie; Institut für Betriebslehre der Agrar- und Ernährungswirtschaft, Justus-Liebig-Universität Gießen
Fördeder
  • Deutsche Forschungsgemeinschaft
Publikationen im Rahmen des Projekts
  • Poltoradnev, M., Ingwersen, J., Streck, T. (2015):
    Calibration and application of Aquaflex TDT soil water probes to measure the soil water dynamics of agricultural topsoil in Southwest Germany
  • Warrach-Sagi, K., Goergen, K., Vautard, R. (2014)
    Experiences with WRF in EURO-CORDEX
  • Milovac, J., Ingwersen, J., Warrach-Sagi, K. (2014)
    Soil texture forcing data for the whole world for the Weather Research and Forecasting (WRF) Model of the University of Hohenheim (UHOH) based on the Harmonized World Soil Database (HWSD) at 30 arc-second horizontal resolution.
  • Milovac, J., Ingwersen, J., Warrach-Sagi, K. (2014)
    Top soil texture forcing data for the area of Germany for the Weather Research and Forecasting (WRF) Model based on the Bodenubersichtskarte (BUK) at a scale 1:1000000 (BUK1000) and provided by the University of Hohenheim (UHOH)
  • Greve, P., Warrach-Sagi, K., Wulfmeyer, V. (2013)
    Evaluating soil water content in a WRF-NOAH downscaling experiment
  • Warrach-Sagi, K., Schwitalla, T., Wulfmeyer, V., Bauer, H.-S. (2013)
    Evaluation of a climate simulation in Europe based on the WRF-NOAH Model System: precipitation in Germany
  • Vautard, R., Gobiet, A., Jacob, D., Belda, M., Colette, A., Deque, M., Fernandez, J., Garcia-Diez, M., Goergen, K., Guettler, I., Halenka, T., Keuler, K., Kotlarski, S., Nikulin, G., Patarcic, M., Suklitsch, M., Teichmann, C., Warrach-Sagi, K., Wulfmeyer (2013)
    The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project
  • Gayler, S., Ingwersen, J., Priesack, E., Wöhling, T., Wulfmeyer, V., Streck, T. ( 2013)
    Assessing the relevance of subsurface processes for the simulation of evapotranspiration and soil moisture dynamics with CLM3.5: Comparison with field data and crop model simulations
  • Wöhling,T., Gayler, S., Priesack, E., Ingwersen, J., Wizemann, H.-D., Högy, P., Cuntz, M., Attinger, S., Wulfmeyer, V., Streck, T. (2013)
    Multiresponse, multiobjective calibration as a diagnostic tool to compare accuracy and structural limitations of five coupled soil-plant models and CLM3.5
  • Warrach-Sagi, K., Milovac, J., Bauer, H.-S., Behrendt, A., Schwitalla, T., Späth, F., Wulfmeyer, V. (2014):
    High-resolution climate predictions and short-range forecasts
  • Kunlanit, B., Vityakon, P., Puttaso, A., Cadisch, G., Rasche, F. (2014)
    Mechanisms controlling soil organic carbon composition pertaining to microbial decomposition of biochemically contrasting organic residues: Evidence from midDRIFTS peak area analysis
  • Gayler, S., Wöhling,T., Grzeschik, M., Ingwersen, J., Wizemann, H.-D., Warrach-Sagi, K., Högy, P., Attinger, S., Streck, T., Wulfmeyer, V. (2014)
    Incorporating dynamic root growth enhances the performance of Noah-MP at two contrasting winter wheat field sites
  • Makowski, D., Asseng, S., Ewert, F., Bassu, S. et al. (2015)
    Statistical analysis of large simulated yield datasets for studying climate effects
  • Wulfmeyer, V., Hardesty, R. M., Turner, D. D., Behrendt, A., Cadeddu, M. P., Di Girolamo, P., Schlüssel, P., Van Baelen, J., Zus, F. (2015)
    A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles
  • Troost, C., Berger, T., (2015)
    Process-based simulation of regional supply functions using farm-level and agent-based models
  • Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrachagi, K., Wulfmeyer, V. (2014)
    Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble
  • Berger, T., Troost, C. (2014)
    Agent-based Modelling of Climate Adaptation and Mitigation Options in Agriculture
  • Smirnova N., Demyan S., Rasche F., Cadisch G., Müller T. (2014)
    Calibration of CO2 trapping in alkaline solutions during soil incubation at varying temperatures using a Respicond VI
  • Fon L. (2014)
    Quantifying different stabilities of soil organic matter in cropland at the regional scale: Integrating size/density separation and chemical oxidation
  • Mirzaeitalarposhti R. (2014)
    Development of MidDRIFTS methodologies to support mapping of physico-chemical soil properties at the regional scale
  • Rasche, F., Marhan, S., Berner, D., Keil, D., Kandeler, E., Cadisch, G. (2013)
    midDRIFTS-based partial least square regression analysis allows predicting microbial biomass, enzyme activities and 16S rRNA gene abundance in soils of temperate grasslands
  • Demyan, M.S., Rasche, F., Schütt, M., Smirnova, N., Schulz, E., and Cadisch, G. (2013)
    Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils
  • Warrach-Sagi, K., Bauer, H.-S., Branch, O., Milovac, J., Schwitalla, T., Wulfmeyer, V. (2013)
    High-resolution climate predictions and short-range forecasts to improve the process understanding and the representation of land-surface interactions in the WRF model in Southwest Germany (WRFCLIM)
  • Wöhling, T., Geiges, A., Nowak, W., Gayler, S., Högy, P., Wizemann, H.-D. (2013)
    Towards optimizing experiments for maximum-confidence model selection between different soil-plant models
  • Aurbacher, J., Reinmuth, E., Parker, P., Calberto, G., Steinbach, J., Ingwersen, J., Dabbert, S. (2013)
    The Influence of Climate Change on Short-term Farm Management – an Interdisciplinary Modelling Approach
  • Wöhling, T., Gayler, S., Ingwersen, J., Streck, T., Vrugt, J., Priesack, E. (2012)
    Multiobjective calibration of coupled soil-vegetation-atmosphere models
  • Berger, T., Troost, C. (2012)
    Agent-based Modelling in the Agricultural Economics Tradition of Recursive Farm Modelling and Adaptive Micro-Systems
  • Demyan, M.S., Rasche, F., Schulz, E., Breulmann, M., Müller, T., Cadisch, G. (2012)
    Use of specific peaks obtained by diffuse reflectance Fourier transform mid-infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem
  • Hoffmann, N., Keck, M., Neuweger, H., Wilhelm, M., Högy, P., Niehaus, K., Stoye, J. (2012)
    Combining peak- and chromatogram-based retention time alignment algorithms for multiple chromatography-mass spectrometry datasets
  • Warrach-Sagi, K., Schwitalla, T., Bauer, H.-S., Wulfmeyer, V. (2013)
    A regional climate model simulation for EURO-CORDEX with the WRF model
  • Högy, P., Fangmeier, A. (2013)
    Yield and yield quality of major cereals under climate change. In: Wake up before it is too late - Make agriculture truly sustainable now for food security in a changing climate. Chapter 1. Key development challenges of a fundamental transformation
  • Oehme, V., Högy, P., Zebitz, C.P.W., Fangmeier, A. (2013)
    Effects of elevated atmospheric CO2 concentrations on phloem sap composition of spring crops and aphid performance
  • Aurbacher, J., Parker, P. S., Calberto Sánchez, G. A., Steinbach, J., Reinmuth, E., Ingwersen, J., Dabbert, S. (2013)
    Influence of climate change on short term management of field crops – A modelling approach
  • Asseng, S., Ewert, F., Rosenzweig, C., et al. (2013)
    Uncertainty in simulating wheat yields under climate change
  • Biernath, C.J., Bittner, S., Klein, C., Gayler, S., Hentschel, R., Hoffmann, P., Högy, P., Fangmeier, A., Priesack, E. (2013)
    Modeling acclimation of leaf photosynthesis to atmospheric CO2 enrichment
  • Giacometti, C., Demyan, M.S., Cavani, L., Marzadori, C., Ciavatta, C., Kandeler, E. (2013)
    Chemical and microbiological soil quality indicators and their potential to differentiate fertilization regimes in temperate agroecosystems
  • Högy, P., Brunnbauer, M., Koehler, P., Schwadorf, K., Breuer, J., Franzaring, J., Zhunusbayeva, D., Fangmeier, A. (2013)
    Grain quality characteristics of spring wheat (Triticum aestivum) as affected by free-air CO2 enrichment
  • Oehme, V., Högy, P., Franzaring, J., Zebitz, C.P.W., Fangmeier, A. (2013)
    Pest and disease abundance and dynamics in wheat and oilseed rape as affected by elevated atmospheric CO2 concentrations
  • Troost, C., Calberto, G., Berger, T., Ingwersen, J., Priesack, E., Warrach-Sagi, K., Walter, T. (2012)
    Agent-based modeling of agricultural adaptation to climate change in a mountainous area of Southwest Germany
  • Mirzaeitalarposhti, R., Demyan, M.S., Rasche, F., Poltoradnev, M., Cadisch, G., Müller, T. (2015)
    MidDRIFTS-PLSR-based quantification of physico-chemical soil properties across two agroecological zones in Southwest Germany: generic independent validation surpasses region specific cross-validation
  • Ivanov, M., Warrach-Sagi, K., Wulfmeyer, V. (2018)
    Field significance of performance measures in the context of regional climate model evaluation. Part 2: precipitation.
  • Reinmuth, E., Parker, P., Aurbacher, J., Högy, P., Dabbert, S. (2017)
    Modeling perceptions of climatic risk in crop production
  • Heinlein, F., Biernath, C., Klein, C., Thieme, C., Priesack, E. (2017)
    Evaluation of simulated transpiration from maize plants on lysimeters
  • Imukova, K., Ingwersen, J., Hevart, M., Streck, T. (2016)
    Energy balance closure on a winter wheat stand: comparing the eddy covariance technique with the soil water balance method
  • Parker, P., Ingwersen, J., Högy, P., Priesack, E., Aurbacher, J. (2016)
    Simulating regional climate-adaptive field cropping with fuzzy logic management rules and genetic advance
  • Demyan, M.S., Ingwersen, J., Nkwain Funkuin, Y., Ali, R.S., Mirzaeitalarposhti, R., Rasche, F., Poll, C., Müller, T., Streck, T., Kandeler, E., Cadisch, G. (2016):
    Partitioning of ecosystem respiration in winter wheat and silage maize—modeling seasonal temperature effects
  • Troost, C. (2016):
    Mikrosimulation landwirtschaftlicher Produktion auf der Schwäbischen Alb - Klimaanpassungsforschung mit detaillierten Daten aus der Agrarstatistik
  • Milovac, J., Warrach-Sagi, K., Behrendt, A., Späth, F., Ingwersen, J., Wulfmeyer, V. (2016):
    Investigation of PBL schemes combining the WRF model simulations with scanning water vapor differential absorption lidar measurements
  • Wulfmeyer, V., Muppa, S. K., Behrendt, A., Hammann, E., Späth, F., Sorbjan, Z., Turner, D. D., Hardesty, R. M. (2016):
    Determination of convective boundary layer entrainment fluxes, dissipation rates, and the molecular destruction of variances: Theoretical description and a strategy for Its confirmation with a novel lidar system synergy
  • Reinmuth, E., Dabbert, S. (2017):
    Toward more efficient model development for farming systems research – an integrative review
  • Broberg, M., Högy, P., Pleijel, H. (2017)
    CO2-induced changes in wheat grain composition: meta-analysis and response functions
  • Rasche, F., Kramer, S., Enowashua, E., Mackie, M., Högy, P., Marhan, S. (2017)
    Contrasting effect of elevated atmospheric CO2 on the C/N ratio of faba bean and spring wheat residues exert only minor changes in the abundance and enzyme activities of soil proteolytic bacteria
  • Ivanov, M., Warrach-Sagi, K., Wulfmeyer, V. (2018)
    Field significance of performance measures in the context of regional climate model evaluation. Part 1: temperature.
  • Poltoradnev, M., Ingwersen, J., Imukova, K., Högy, P., Wizemann, H.-D., Streck, T. (2018)
    How well does Noah-MP simulate the regional mean and spatial variability of topsoil water content in two agricultural landscapes in southwest Germany?
  • Ali, R. S., Kandeler, E., Marhan, S., Demyan, M. S., Ingwersen, J., Mirzaeitalarposhti, R., Rasche, F., Cadisch, G., Poll, C. (2018)
    Controls on microbially regulated soil organic carbon decomposition at the regional scale
  • Baroni, G., Scheiffele, L. M., Schrön, M., Ingwersen, J., Oswald, S. E. (2018)
    Uncertainty, sensitivity and improvements in soil moisture estimation with cosmic-ray neutron sensing
  • Ali, R. S., Poll, C., Kandeler, E. (2018)
    Dynamics of soil respiration and microbial communities: Interactive controls of temperature and substrate quality
  • Zhang, X., Högy, P., Wu, X., Schmid, I., Wang, X., Schulze, W.X., Jiang, D., Fangmeier, A. (2018)
    Physiological and proteomic evidence for the interactive effects of post-anthesis heat stress and elevated CO2 on wheat
  • Mirzaeitalarposhti R., Demyan M.S., Rasche F., Cadisch G., Müller T. (2017)
    Mid-infrared spectroscopy to support regional-scale digital soil mapping on selected croplands of South-West Germany
  • Knist, S., Goergen, K., Buonomo, E., Christensen, O. B., ...Warrach-Sagi, K., Wulfmeyer, V., Simmer, C. (2017)
    Land-atmosphere coupling in EURO-CORDEX evaluation experiments
  • Späth, F., Behrendt, A., Muppa, S. K., Metzendorf, S., Riede, A., Wulfmeyer, V. (2016)
    3D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar
  • Mirzaeitalarposhti, R., Demyan, M.S., Rasche, F., Cadisch, G., Müller, T. (2016):
    Overcoming carbonate interference on labile soil organic matter peaks for midDRIFTS analysis
  • Troost, C., Berger, T. (2015)
    Dealing with uncertainty in agent-based simulation: Farm-level modeling of adaptation to climate change in Southwest Germany
  • Ali, R. S., Ingwersen, J., Demyan, M. S., Funkuin, Y. N., Wizemann, H.-D., Kandeler, E., Poll, C. (2015):
    Modelling in situ activities of enzymes as a tool to explain seasonal variation of soil respiration from agro-ecosystems
  • Parker, P., Reinmuth, E., Ingwersen, J., Högy, P., Priesack, E., Wizemann, H.-D., Aurbacher, J. (2015):
    Simulation-based projections of crop management and gross margin variance in contrasting regions of Southwest Germany
  • Troost, C., Walter, T., Berger, T. (2015):
    Climate, energy and environmental policies in agriculture: Simulating likely farmer responses in Southwest Germany
  • Arnold, R. T., Troost, C., Berger, T. (2015):
    Quantifying the economic importance of irrigation water reuse in a Chilean watershed using an integrated agent-based model
  • Islam T. (2015):
    Development of a continuous density gradient method for soil organic matter fractionation for studying decomposition and turnover under different tillage systems in arable soils
  • Imukova, K., Ingwersen, J., Streck, T. (2015):
    Determining the spatial and temporal dynamics of the green vegetation fraction of croplands using high-resolution RapidEye satellite images
  • Martre, P., Wallach, D., Asseng, S. et al. (2015):
    Multimodel ensembles of wheat growth: Many models are better than one
  • Pleijel, H., Högy, P. (2015):
    CO2 dose-response functions for wheat grain, protein and mineral yield based on FACE and open-top chamber experiments
  • Wizemann, H.-D., Ingwersen, J., Högy, P., Warrach-Sagi, K., Streck, T., Wulfmeyer, V. (2015):
    Three year observations of water vapor and energy fluxes over agricultural crops in two regional climates of Southwest Germany
  • Fangmeier, A., Torres-Toledo, V., Franzaring, J., Damsohn, W. (2016):
    Design and performance of a new FACE (free air carbon dioxide enrichment) system for crop and short vegetation exposure
  • Poltoradnev, M., Ingwersen, J., Streck, T. (2016):
    Spatial and temporal variability of soil water content in two regions of Southwest Germany during a three-year observation period
  • Troost, C., Berger, T., (2016)
    Simulating structural change in agriculture: Modelling farming households and farm succession
  • Eisele, M., Troost, C., Berger, T. (2016):
    Experimental measurement of stakeholder expectation formation and risk taking behavior for integrated regional agricultural land use modeling
  • Jänecke, A., Eisele, M., Reinmuth, E., Steinbach, J., Aurbacher, J. (2016):
    German Farmers' Perception of Climate Change Effects and Determinants influencing their Climate Awareness
  • Troost, C., Berger, T., (2016):
    Advances in probabilistic and parallel agent‐based simulation: Modelling climate change adaptation in agriculture
  • Hoffmann, H., Zhao, G., Asseng, S., Bindi, M., Biernath, C.,...Heinlein, F.,...Priesack, E., et al. (2016):
    Impact of spatial soil and climate input data aggregation on regional yield simulations
  • van Bussel, L.G.J., Ewert, F., Zhao, G., Hoffmann, H., Enders, A., Wallach, D., Constantin, J., Raynal, H., Klein, C., Biernath, C., Heinlein, F., Priesack, F., Tao, F., et al. (2016):
    Spatial sampling of weather data for regional crop yield simulations
  • Ingwersen, J., Imukova, K., Högy, P., Streck, T. (2015)
    On the use of the post-closure methods uncertainty band to evaluate the performance of land surface models against eddy covariance flux data

Status: abgeschlossen

Projektbeginn: 01.02.2012
Projektende: 31.08.2018

Förderkennzeichen: DFG: STR 481/9-1,2 & FOR 1695

Projekt-Homepage: https://klimawandel.uni-hohenheim.de

Schlagworte: Agrarlandschaften, Bodenwassermodellierung, Pflanzenwachstumsmodelle

Beschreibung

Gekoppelte Atmosphären-Landoberflächen-Modelle sind wichtige Werkzeuge, um die Auswirkungen des Klimawandels auf der regionalen Skala abzuschätzen. Die Qualität regionaler Klimasimulationen hängt wesentlich von einer guten Beschreibung der Landoberflächen­austauschprozesse ab. Hier spielen die Wechselwirkungen zwischen Böden, Pflanzen und der Atmosphäre eine Schlüsselrolle. In der ersten Phase haben wir das Pflanzenwachstumsmodell GECROS mit dem Landoberflächenmodell NOAHMP gekoppelt. In der zweiten Phase werden wir die Leistungsfähigkeit und Robustheit von NOAHMP-GECROS im Hinblick darauf testen, wie gut Bodenwasserhaushalt, Pflanzenwachstum und Landoberflächenaustausch vom Modell abgebildet werden. Die Überprüfung und nötigenfalls Weiterentwicklung wird anhand der Langzeitdaten von unseren Eddy-Kovarianz-Stationen und regionalen Bodenwassermessnetzen erfolgen. Über das Atmosphären-Landoberflächen-Pflanzenwachstums-Modell ALCM (NOAHMP-GECROS gekoppelt mit WRF) ist NOAHMP-GECROS ein wesentlicher Bestandteil des zu entwickelnden Integrierten Landsystem-Modellsystems (ILMS). In enger Zusammenarbeit mit den anderen Projekten der Forschergruppe werden wir mit ILMS Rückkopplungen in Landsystemen (Kraichgau und Schwäbische Alb) unter dem Klimawandel untersuchen. Innerhalb dieser Zusammenarbeit werden wir unter anderem klären, bis zu welchem Detail Prozesse im Bereich Boden-Pflanze abgebildet werden müssen, um Landschaftsfunktionen wie Pflan­zen­produktion und Wasser­haus­halt ausreichend genau zu simulieren.

Teilprojekt P2 der DFG-Forschergruppe 1695 "Agricultural Landscapes under Global Climate Change – Processes and Feedbacks on a Regional Scale"

Beteiligte Personen
  • M.Sc. Ravshan Eshonkulov
  • Prof. Dr. rer. nat. Thilo Streck
  • Dr. rer. nat. Sebastian Gayler
  • Dr. rer. nat. Joachim Ingwersen
Beteiligte Einrichtungen
  • DFG-Forschergruppe 1695: Regional Climate Change
  • Fg. Biogeophysik
  • Institut für Bodenkunde und Standortslehre
Förderer
  • Deutsche Forschungsgemeinschaft
Publikationen im Rahmen des Projekts
  • Poltoradnev, M., Ingwersen, J., Imukova, K., Högy, P., Wizemann, H.-D., Streck, T. (2018)
    How well does Noah-MP simulate the regional mean and spatial variability of topsoil water content in two agricultural landscapes in southwest Germany?
  • Ingwersen, J., Imukova, K., Högy, P., Streck, T. (2015)
    On the use of the post-closure methods uncertainty band to evaluate the performance of land surface models against eddy covariance flux data
  • Mirzaeitalarposhti, R., Demyan, M.S., Rasche, F., Poltoradnev, M., Cadisch, G., Müller, T. (2015)
    MidDRIFTS-PLSR-based quantification of physico-chemical soil properties across two agroecological zones in Southwest Germany: generic independent validation surpasses region specific cross-validation
  • Poltoradnev, M., Ingwersen, J., Streck, T. (2015)
    Calibration and application of Aquaflex TDT soil water probes to measure the soil water dynamics of agricultural topsoil in Southwest Germany
  • Makowski, D., Asseng, S., Ewert, F., Bassu, S. et al. (2015)
    Statistical analysis of large simulated yield datasets for studying climate effects
  • Gayler, S., Wöhling,T., Grzeschik, M., Ingwersen, J., Wizemann, H.-D., Warrach-Sagi, K., Högy, P., Attinger, S., Streck, T., Wulfmeyer, V. (2014)
    Incorporating dynamic root growth enhances the performance of Noah-MP at two contrasting winter wheat field sites
  • Wöhling,T., Gayler, S., Priesack, E., Ingwersen, J., Wizemann, H.-D., Högy, P., Cuntz, M., Attinger, S., Wulfmeyer, V., Streck, T. (2013)
    Multiresponse, multiobjective calibration as a diagnostic tool to compare accuracy and structural limitations of five coupled soil-plant models and CLM3.5
  • Asseng, S., Ewert, F., Rosenzweig, C., et al. (2013)
    Uncertainty in simulating wheat yields under climate change
  • Aurbacher, J., Parker, P. S., Calberto Sánchez, G. A., Steinbach, J., Reinmuth, E., Ingwersen, J., Dabbert, S. (2013)
    Influence of climate change on short term management of field crops – A modelling approach
  • Gayler, S., Ingwersen, J., Priesack, E., Wöhling, T., Wulfmeyer, V., Streck, T. (2013)
    Assessing the relevance of subsurface processes for the simulation of evapotranspiration and soil moisture dynamics with CLM3.5: Comparison with field data and crop model simulations
  • Aurbacher, J., Reinmuth, E., Parker, P., Calberto, G., Steinbach, J., Ingwersen, J., Dabbert, S. (2013)
    The Influence of Climate Change on Short-term Farm Management – an Interdisciplinary Modelling Approach
  • Wöhling, T., Gayler, S., Ingwersen, J., Streck, T., Vrugt, J., Priesack, E. (2012)
    Multiobjective calibration of coupled soil-vegetation-atmosphere models
  • Imukova, K., Ingwersen, J., Streck, T. (2015)
    Determining the spatial and temporal dynamics of the green vegetation fraction of croplands using high-resolution RapidEye satellite images
  • Ali, R. S., Ingwersen, J., Demyan, M. S., Funkuin, Y. N., Wizemann, H.-D., Kandeler, E., Poll, C. (2015)
    Modelling in situ activities of enzymes as a tool to explain seasonal variation of soil respiration from agro-ecosystems
  • Ali, R. S., Kandeler, E., Marhan, S., Demyan, M. S., Ingwersen, J., Mirzaeitalarposhti, R., Rasche, F., Cadisch, G., Poll, C. (2018)
    Controls on microbially regulated soil organic carbon decomposition at the regional scale
  • Ingwersen, J., Högy, P., Wizemann, H.D., Warrach-Sagi, K., Streck, T. (2018)
    Coupling the land surface model Noah-MP with the generic crop growth model Gecros: Model description, calibration and validation
  • Baroni, G., Scheiffele, L. M., Schrön, M., Ingwersen, J., Oswald, S. E. (2018)
    Uncertainty, sensitivity and improvements in soil moisture estimation with cosmic-ray neutron sensing
  • Imukova, K., Ingwersen, J., Hevart, M., Streck, T. (2016)
    Energy balance closure on a winter wheat stand: comparing the eddy covariance technique with the soil water balance method
  • Parker, P., Ingwersen, J., Högy, P., Priesack, E., Aurbacher, J. (2016)
    Simulating regional climate-adaptive field cropping with fuzzy logic management rules and genetic advance
  • Demyan, M.S., Ingwersen, J., Nkwain Funkuin, Y., Ali, R.S., Mirzaeitalarposhti, R., Rasche, F., Poll, C., Müller, T., Streck, T., Kandeler, E., Cadisch, G. (2016)
    Partitioning of ecosystem respiration in winter wheat and silage maize—modeling seasonal temperature effects
  • Milovac, J., Warrach-Sagi, K., Behrendt, A., Späth, F., Ingwersen, J., Wulfmeyer, V. (2016)
    Investigation of PBL schemes combining the WRF model simulations with scanning water vapor differential absorption lidar measurements
  • Poltoradnev, M., Ingwersen, J., Streck, T. (2016)
    Spatial and temporal variability of soil water content in two regions of Southwest Germany during a three-year observation period
  • Wizemann, H.-D., Ingwersen, J., Högy, P., Warrach-Sagi, K., Streck, T., Wulfmeyer, V. (2015)
    Three year observations of water vapor and energy fluxes over agricultural crops in two regional climates of Southwest Germany
  • Martre, P., Wallach, D., Asseng, S. et al. (2015)
    Multimodel ensembles of wheat growth: Many models are better than one
  • Parker, P., Reinmuth, E., Ingwersen, J., Högy, P., Priesack, E., Wizemann, H.-D., Aurbacher, J. (2015)
    Simulation-based projections of crop management and gross margin variance in contrasting regions of Southwest Germany
  • Ingwersen, J., Steffens, K., Högy, P., Warrach-Sagi, K., Wizemann, H.-D., Zhunusbayeva, D., Poltoradnev, M., Gäbler, R., Fangmeier, A., Wulfmeyer, V., Streck, T. (2011)
    Comparison of Noah simulations with Eddy covariance and soil water measurements at a winter wheat stand

Status: laufend

Projektbeginn: 01.09.2016
Projektende: 31.12.2024

Förderkennzeichen: 57316245

Projekt-Homepage: https://fsc.uni-hohenheim.de/en/projectclifood

Schlagworte: climate change, Eastern African region, Ethiopia, Food Security, multidisciplinary research, qualification program, SDG-Graduate School, SDGs, Sub-Saharan Africa, sustainable development

Beschreibung

Background and objectives
Food security is highly sensitive to climate risks in the Eastern African region. Food production, access to markets, and income from agricultural activities are connected inseparably with climate-related events and food security crises. The German-Ethiopian SDG-Graduate School entitled ‘Climate change effects on food security’ (CLIFOOD) aims at empowering young academics of HEIs on the African continent focusing on SDGs: No poverty, Zero hunger, Good health and well-being, Quality education, Climate action, Life on land, Partnerships for the goals.  Main objective of CLIFOOD is the education of African students at the (post) doctorate level to address the threats of climate change to food security in the Eastern African region. Furthermore, CLIFOOD strengthens bilateral partnerships between higher education institutions in Germany and Ethiopia, supports relevant, high-quality educational offerings of structured study courses on research subjects, achieves greatest possible multidisciplinary research, qualifies specialized experts and lecturers at doctorate and postdoc level, and contributes towards the joint development of innovative solutions to higher education and SDG topics. 

Research
Agriculture is the backbone of the Ethiopian economy, but climate change strongly affects food security in Sub-Saharan Africa. Ethiopia is facing severe droughts having impacts on the lives and livelihoods of farmers. Demand-driven research on climate change and food security will be conducted and improved within CLIFOOD with special reference to the Agenda 2030 and its SDGs. Interdisciplinary research on adaptation strategies for agriculture is conducted with respect to weed control, livestock production, food and feed crops, soil health, grain quality, farming households, human nutrition as well as seasonal weather forecasts.

Qualification program
CLIFOOD offers a unique interdisciplinary qualification program for PhD students and Postdocs. According to the research areas, it conveys knowledge and methods from a wide range of disciplines like soil science, physics, meteorology, (agro)ecology, crop science, livestock science, agricultural economics, and nutritional and food sciences.

Beteiligte Personen
Beteiligte Einrichtungen
  • Fg. Agrarökologie der Tropen und Subtropen
  • Institut für Physik und Meteorologie
  • Institut für Landschafts- und Pflanzenökologie
  • Institut für Ernährungswissenschaften
  • Institut für Bodenkunde und Standortslehre
  • Institut für Agrartechnik
  • Food Security Center (FSC)
  • Fg. Physik und Meteorologie
  • Fg. Pflanzenökologie und Ökotoxikologie
  • Fg. Ökonomik der Landnutzung in den Tropen und Subtropen (Josef G. Knoll Professur)
  • Fg. Biogeophysik
  • Fg. Biofunktionalität der Lebensmittel
  • Fg. Agrartechnik in den Tropen und Subtropen
  • Institut für Tropische Agrarwissenschaften (Hans-Ruthenberg-Institut)
Weitere Informationen
Förderer
  • Supported by the DAAD program Bilateral SDG Graduate Schools
  • funded by the Federal Ministry for Economic Cooperation and Development (BMZ)

Status: laufend

Projektbeginn: 01.09.2016
Projektende: 31.12.2020

Förderkennzeichen: 57316245

Projekt-Homepage: https://fsc.uni-hohenheim.de/en/projectclifood

Schlagworte: climate impacts, crop model, maize, model structural errors, multi-model simulation, predictive uncertainty, sorghum, wheat, yield prediction

Beschreibung

Crop models are the most common tools for assessing the threat of climate change to local and re­gional crop productivity. However, numerous studies have shown that models used to predict crop yields are highly uncertain when predicting how crops respond to changes in temperature, annual precipitation amounts and distribution, and increasing carbon dioxide concentrations. It was also shown that simulations differ across crop models and that a significant proportion of the uncertainty in climate change impact projections is due to differences in the structure of these models. Hence, applications of multi-model ensembles have been suggested to reduce uncertainty in simulation of crop response to future climate.

The aim of this project is to reduce uncertainty in predictions of climate change impacts on productivity of wheat, maize and sorghum in Ethiopia. The agro-ecosystem simulation tool box Expert-N is used to setup a multi-model ensem­ble composed of four different crop growth models combined with different water regime and nitrogen turnover models. The single ensemble members are run for different locations in Ethiopia taking into account the country-specific management strategies and climate inputs. Simulation results are tested against recent and historic yield data. Uncertainties in model predictions due to the dif­ferent model structures are quantified. Bayesian techniques are applied to calculate model weights accounting for the predictive power of each model combination. Only models with relevant predictive power (relevant weights) will finally be used for predicting crop productivity in Ethiopia during the next 20-30 years resulting in more reliable estimations of future yields, which may aid developing practicable mitigation strategies.

This subproject is part of the CLIFOOD project which is part of the Food Security Center.

Beteiligte Personen
Beteiligte Einrichtungen
Förderer
  • Supported by the DAAD program Bilateral SDG Graduate Schools
  • funded by the Federal Ministry for Economic Cooperation and Development (BMZ)